Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images.

نویسندگان

  • Gyan Pareek
  • U Rajendra Acharya
  • S Vinitha Sree
  • G Swapna
  • Ratna Yantri
  • Roshan Joy Martis
  • Luca Saba
  • Ganapathy Krishnamurthi
  • Giorgio Mallarini
  • Ayman El-Baz
  • Shadi Al Ekish
  • Michael Beland
  • Jasjit S Suri
چکیده

In this work, we have proposed an on-line computer-aided diagnostic system called "UroImage" that classifies a Transrectal Ultrasound (TRUS) image into cancerous or non-cancerous with the help of non-linear Higher Order Spectra (HOS) features and Discrete Wavelet Transform (DWT) coefficients. The UroImage system consists of an on-line system where five significant features (one DWT-based feature and four HOS-based features) are extracted from the test image. These on-line features are transformed by the classifier parameters obtained using the training dataset to determine the class. We trained and tested six classifiers. The dataset used for evaluation had 144 TRUS images which were split into training and testing sets. Three-fold and ten-fold cross-validation protocols were adopted for training and estimating the accuracy of the classifiers. The ground truth used for training was obtained using the biopsy results. Among the six classifiers, using 10-fold cross-validation technique, Support Vector Machine and Fuzzy Sugeno classifiers presented the best classification accuracy of 97.9% with equally high values for sensitivity, specificity and positive predictive value. Our proposed automated system, which achieved more than 95% values for all the performance measures, can be an adjunct tool to provide an initial diagnosis for the identification of patients with prostate cancer. The technique, however, is limited by the limitations of 2D ultrasound guided biopsy, and we intend to improve our technique by using 3D TRUS images in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-classifier system for the characterization of normal, infectious, and cancerous prostate tissues employing transrectal ultrasound images

A computer-aided diagnostic system has been developed for the discrimination of normal, infectious and cancer prostate tissues based on texture analysis of transrectal ultrasound images. The proposed system has been designed using a panel of three classifiers, which have been evaluated individually or as a mutli-classifier scheme, using the external cross-validation procedure. Clinical data con...

متن کامل

Texture Classification of Diffused Liver Diseases Using Wavelet Transforms

Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure.  The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There  are  some  approaches  to  develop  a  reliable  noninvasive  method  of  evaluating  histological  changes  in  sonograms. The main characteristic used to distinguish between the normal...

متن کامل

Automated detection of prostate cancer using wavelet transform features of ultrasound RF time series

Extended abstract According to the American Cancer Society, prostate cancer is the second common type of cancer found in American men (skin cancer is the most common type). Prostate cancer is the second leading cause of cancer death in men (second to the lung cancer). Prostate cancer may be found by testing the amount of prostate-specific antigen (PSA) in blood and digital rectal exam (DRE). Du...

متن کامل

Grlm for Prostate Cancer Trus Medical Images

Ultrasound imaging is one of the promising techniques for early detection of prostate cancer. There are five steps involved in processing the ultrasound images such as pre-processing, segmentation, feature extraction, feature selection, and classification. In this paper, the Transrectal Ultrasound (TRUS) images are preprocessed with M3 filter. Then it is segmented by using DBSCAN clustering aft...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technology in cancer research & treatment

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2013